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Abstract

To clarify chaotic behavior of thin walled beams, detailed experimental results are presented on chaotic vibrations of a

post-buckled beam subjected to periodic lateral acceleration. A thin steel beam of thickness 0.198mm, breadth 12.7mm

and length 106mm is used as a test beam. Both ends of the beam are clamped for deflection. One end of the beam is

elastically constrained by an axial spring. The beam is compressed to the post-buckled configuration by the axial spring.

First, characteristics of restoring force and natural frequency of the beam are obtained. Dynamic nonlinear responses of

the beam are measured under periodic acceleration. In specific frequency regions, chaotic responses are generated. The

chaotic responses are examined carefully with the Poincaré maps, the Fourier spectra, the maximum Lyapunov exponents

and the principal component analysis.The post-buckled beam shows the soften-and-hardening characteristics of restoring

force. The dominant chaotic responses of the beam are bifurcated from the sub-harmonic resonances of 1
2
and 1

3
orders with

the lowest mode of vibration. Changing the exciting frequency gradually, dynamical transition behaviors from these

steady-state sub-harmonic response to the chaotic responses are precisely inspected by the Poincaré projection. The

maximum Lyapunov exponent of the former chaotic response of 1
2
order is larger than that of the latter chaotic response of

1
3
order. The principal component analysis predicts that the contribution of the lowest mode of vibration to the chaos is

dominant among other contributions of multiple vibration modes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Thin walled structures are used in many light weight vehicles, such as spacecraft, aircraft, automobiles and
railway vehicles. The thin structures are subjected to static external force and dynamic force under severe
operational conditions. Furthermore, it is required to reduce the total weight of the thin structures without
losing the rigidity of the structures. Beams and arches are used as fundamental elements of the thin structures.
These are usually connected to other elastic elements at their boundaries. As the external forces are loaded on
the elements, each element is deformed laterally and axially by an axial elastic constraint at the boundary.
When the beam is compressed intensely by the axial elastic constraint, elastic buckling occurs easily in the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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beam. Then the beam is deformed to a curved configuration in a post-buckled state. As the post-buckled beam
has a sufficient curvature, the beam has higher bending rigidity than that of a straight beam. However, snap-
through buckling of the post-buckled beam occurs under critical lateral force. Under periodic lateral force, a
large amplitude vibration of the beam is excited by nonlinear resonance even though the amplitude of the
periodic force is small. In typical frequency ranges of the periodic force, chaotic vibrations are generated. Since
lateral response of the beam has nonlinear coupling with axial displacement, the generation of the chaos is
drastically influenced by the small fluctuations of the axial elastic constraint. Furthermore, the chaotic
response of the beam shows a violent movement due to dynamic snap-through transitions. Therefore, multiple
modes of vibration are generated simultaneously in the chaotic response. It is of great importance to determine
more precisely the generation of the chaotic response and the contribution of vibration modes to the chaotic
response in the post-buckled beam with the axial elastic constraint.

Nonlinear vibrations and chaotic phenomena of beams and arches were investigated by many researchers
including the authors. Nonlinear vibrations of a buckled beam clamped at both ends were studied by Tseng
and Dugundji [1] and Yamaki et al. [2,3]. In their reports, irregular dynamic snap-through responses of the
buckled beam were mentioned. Chaotic vibrations of a cantilevered buckled beam with two-well potential
function were studied by Holmes [4] and Moon and Holmes [5]. Pzeshki and Dowell [6] investigated chaotic
responses of a buckled beam using the Lyapunov dimension to estimate the number of vibration modes in the
chaos. Azeez and Vakakis [7] introduced the principal component analysis to estimate contributions of
vibration modes in the vibro-impact problem of a cantilevered beam. The authors have investigated the
nonlinear vibrations of an arch [8,9] and chaotic vibrations of a post-buckled beam [10–12] both
experimentally and analytically. Both ends of the arches and beams were clamped for deflection and the
axial displacement was completely fixed at the boundary. In the experiments, the axial displacement was kept
constant by the control on the thermal elongations of the beam and arch to that of the fixture. Chaotic
phenomena of an arch [13] and a beam [14,15] with variable cross section were analyzed theoretically.
Multiple-degree-of-freedom system on the beam and arch was introduced in the analyses. It was found that
predominant chaotic responses are dominated by the sub-harmonic resonance responses of 1

2 order and
1
3 order

with the fundamental mode of vibration. However, it was difficult to detect the axial displacements of the
arches and the beams directly. The chaotic responses were tremendously sensitive to the axial displacement.
To overcome these difficulties, first the authors analyzed the chaotic vibration of clamped arches constrained
by an axial elastic support theoretically [16]. Furthermore, the authors conducted the experiment of a post-
buckled reinforced beam constrained by an axial spring at the boundary [17]. Movements of the reinforced
beam was restricted to that of a discrete two-link system. Responses of the reinforced beam showed basic
features of chaos in a lower degree-of-freedom system. In contrast, when the chaotic responses of a post-
buckled beam are generated, multiple modes of vibration contribute to the chaos simultaneously.

To clarify whole features of chaotic phenomena of a post-buckled beam elastically constrained in the axial
direction, experimental results are presented precisely. In the experiment, both ends of the beam are clamped.
One end of the beam is connected to an axial spring and is movable in the axial direction. The beam is
compressed by an initial axial displacement through the axial spring, then the beam is deformed to a post-
buckled configuration. Under periodic acceleration, chaotic responses of the beam are examined with the
frequency response curves, the Fourier spectra, the Poincaré projections and the maximum Lyapunov
exponents. Furthermore, under sweeping exciting frequency with a very slow rate, bifurcation behaviors from
periodic responses to the chaotic response are precisely inspected by the Poincaré projection. Finally, applying
the principal component analysis, that is also called as the Karhnen–Loève method [18] or the proper
orthogonal decomposition, contributions of multiple modes of vibration to the chaotic response are analyzed
with the time responses at multiple positions of the beam.

2. Test beam and fixture

A thin steel beam with thickness h ¼ 0:198mm, breadth b ¼ 12:7mm and length 141mm is clamped at the
both ends. The actual length of the clamped beam is L ¼ 106mm. To detect lateral displacement of the beam
by a laser displacement sensor, both surfaces of the beam are painted white as a reflection target. Material
properties of the beam are measured as the Young’s modulus E ¼ 196GPa and the mean mass density
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Fig. 1. Fixture of the beam and the axial elastic-constraint.
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r ¼ 7:78� 103 kg=m3. The total mass of the beam is m ¼ 2:33� 10�3 kg. Fig. 1 shows the beam and its fixture.
The fixture consists of two fixing devices of the beam ends. One end of the beam is firmly fixed to a base plate
through a rigid block. The other clamped end of the beam is connected to a movable table. The movable table
consists of two elastic plates on a slide block and works as the axial spring. Consequently, the beam is clamped
at both the ends laterally and is elastically constrained to the axial direction. When the slide block on the base
plate is compressed inward by a screw, compressive axial force is loaded on the beam. The axial force can be
detected by strain gauges glued on the elastic plate. The axial spring-constant of the movable table without the
beam is K ¼ 36:9� 103 N=m. The lowest natural frequency of the movable table without the clamped beam is
215Hz and an equivalent mass is calculated as M ¼ 28:4� 10�3 kg. As shown in the figure, the coordinate
system is denoted by x-axis and z-axis, where the direction of z-axis corresponds to the direction of gravity.
The lateral deflection of the beam is denoted by W ðx; tÞ, where t is the time. As the beam is compressed by the
axial spring and the axial force exceeds the critical force of buckling, the beam shows post-buckled
configuration.

3. Vibration test apparatus

The post-buckled beam is excited under periodic acceleration with a system of an electromagnetic exciter
through the fixture. Dynamic responses of the beam at several positions are measured with a set of multiple
laser displacement sensors. A schematic diagram of the test setup is shown in Fig. 2. In the figure, devices
numbered from 1 to 4 compose the set of the electromagnetic exciter. The exciter controller 1 generates a
periodic sinusoidal signal which is amplified by the power amplifier 2. The vibration exciter 3 drives the fixture
with periodic acceleration on which the post-buckled beam is fixed. The accelerometer 4 picks up the signal of
the periodic acceleration. The signal is fed back to the exciter controller 1. Then, the peak acceleration is kept
at a prescribed constant level. The electromagnetic exciter has the maximum amplitude of periodic force
1780N. The total mass of the beam and the fixture including the moving element of the exciter is 7.4 kg, then



ARTICLE IN PRESS

1

8

14

10

76

2

13

15 16

wrms

4
5

3

f

9

,w

w

f

A

spω
w

τ

e

λ

w

w

,ωτw

12

11

...

max

ωτ

rms

Fig. 2. Vibration test apparatus of the beam.
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the maximum peak amplitude of acceleration 240m=s2 can be applied on the beam. The exciting frequency can
be swept from 20Hz to 10 kHz with the resolution 1.2mHz. The lowest sweep rate is 1mHz/s. The excitation
is provided by the devices of Brüel and Kjaer products (Exciter controller: B&K 1050, Power amplifier: B&K
2078, Vibration exciter: B&K 4802 and 4818, Acceleration pickup: B&K 4371). The beam is subjected to the
gravitational acceleration g and the periodic acceleration ad cos 2pft, where f is the exciting frequency and ad is
the peak amplitude of acceleration.

The instruments of laser displacement sensor are numbered from 6 to 8 (Keyence LC2400, with measuring
range �3mm). The sensor 6 detects total displacements both of the beam and the base plate of the fixture,
while the sensor 7 measures the displacement of the base plate only. The controller 8 subtracts these signals,
then relative displacement of the beam to the base plate is detected. To inspect contributions of multiple
modes to the chaos, chaotic responses are detected simultaneously at five positions along the beam. The multi-
channel digital recorder 9 (Teac DR-M2a, 8ch) acquires the dynamic responses. The digital voltmeter 10
(Advantest TR6841) transforms the response of the beam to the root mean square value. The frequency
counter 11 (Advantest TR5822) measures the frequency of the periodic excitation. Then, frequency response
curves of the beam are monitored by the computer 12. The digital spectrum analyzer 13 (Advantest TR9405)
transforms the dynamic response to the Fourier spectrum. The Poincaré projection of the chaotic response is
recorded as follows: the displacement of the chaotic response is differentiated to the velocity by the differential
amplifier 14. The phase meter 15 (B&K 2971) detects the maximum point of the periodic acceleration of the
excitation and then the pulse oscillator 16 (NF Elec. Instr. 1930) sends a timing signal to the analyzer 13 with a
prescribed phase shift. Then, the analyzer captures both the aforementioned displacement and velocity of the
chaotic response. Finally, computer 12 records the Poincaré projection of the chaos.

4. Test procedure

4.1. Non-dimensional notations

To discuss the results of the experiments, the following non-dimensional notations are introduced:

x ¼ x=L; w ¼W=h; nx ¼ NxL2=EI ; ½ps; pd � ¼ ½g; ad �rAL4=EIr,

qs ¼ QsL
3=EIr; t ¼ O0t; o ¼ 2pf =O0, ð1Þ
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where r ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
represents the radius of gyration of cross section of the beam, O0 ¼ L�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
is the

coefficient corresponding to lateral vibration of the beam. In Eq. (1), x is the non-dimensional coordinate, w is
the lateral displacement normalized by the beam thickness h. Notation nx is the non-dimensional axial force
where Nx represents the axial force on the cross section. Notations ps and pd are the non-dimensional force
intensities related to the gravitational acceleration g and the peak acceleration of periodic excitation ad ,
respectively. When the characteristics of restoring force of the beam is examined, static lateral deflection by the
concentrated static force Qs is measured. Notation qs is the non-dimensional static force. Notations o and t
are the non-dimensional exciting frequency and the time, respectively. Non-dimensional exciting force is
expressed as ps þ pd cosot.

4.2. Fundamental properties of the post-buckled beam

To find fundamental properties of the post-buckled beam, the linear natural frequencies and the restoring
force are inspected.

Applying periodic acoustical pressure and impact force on the beam, linear natural frequencies of lateral
vibration and of longitudinal vibration, respectively, are detected with the spectrum analyzer. The lowest
natural frequency of the beam is measured by increasing the axial compressive force. Fig. 3 shows the lowest
linear natural frequency o1 of the beam under the axial compressive force �nx. The static lateral force ps

loaded initially on the beam is ps ¼ 271 by the gravitational acceleration ðg ¼ 9:798m=s2). The actual lowest
natural frequency f 1 measured with Hz is also indicated on the abscissa. Increasing the compressive force from
nx ¼ 0, the frequency o1 decreases gradually. When the natural frequency o1 ¼ 12:7 takes a minimum finite
value, the axial force corresponds to the critical compressive force ncr ¼ �36:0 ðNcr ¼ �5:16NÞ of the
buckling. The finite value of the frequency is due to the static deflections by the gravity force and inevitable
initial imperfection. The initial imperfection of the beam appears inherently during the fabrication of the
beam. The initial imperfection involves an initial deflection and deformation caused by the clamp at the ends.
Further, the axial force is increased more than the critical force ncr, the natural frequency o1 increases steeply.
The reason of the steep increment of the frequency is explained as follows: as the post-buckled deflection of the
beam increases, the stiffness of the beam increases by a geometrical nonlinear relation with deflection and axial
displacement.

Fixing the beam to the post-buckled form with the axial force nx ¼ �40:9 ðNx ¼ �5:86NÞ, which
corresponds to 1.14 times of the critical force, the natural frequencies are found to be o1 ¼ 19:5
ðf 1 ¼ 78:0HzÞ, o2 ¼ 44:3 ðf 2 ¼ 177HzÞ and o3 ¼ 99:8 ðf 3 ¼ 399HzÞ. Where o1, o2 and o3 correspond to the
lowest, the second and the third modes of lateral vibration, respectively. An axial vibration is excited by an
impact hammer. The natural frequency of axial vibration is measured by the Fourier analyzer. The natural
frequency of axial vibration of the beam is 9.4 times greater than the natural frequency o1 of the lowest mode
of lateral vibration.
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Fig. 3. Natural frequency of the beam under axial compression, ncr is the critical force of the buckling.
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Furthermore, to obtain the characteristics of restoring force, the relation between static lateral deflection w

and static concentrated force qs is measured with a laser displacement sensor and a load cell. The load cell
consists of a dual-cantilevered beam with a tip needle. A strain gauge is glued on the cantilevered beam.
Pressing the load cell to the buckled beam through the tip needle, the buckled beam shifts to an equilibrium
position of elastic force between the beam and the load cell. The intensity of the concentrated force is detected
with the strain gauge, while the deflection of the buckled beam is measured with the laser sensor. Under the
axial force nx ¼ �40:9 and the gravitational force ps ¼ 271, the static deflection at the mid point of the beam
shows 12.5 times of the beam thickness (the actual static deflection is 2.48mm). Fig. 4 shows the static lateral
deflection w at the position x ¼ 0:3 under the concentrated force qs loaded on the mid span of the beam. The
origin of deflection is selected at the static equilibrium position of the beam under the axial compressive force
and the gravity. The characteristics of restoring force of the post-buckled beam show the type of a softening-
and-hardening spring including a negative gradient. In the figure, the deflection of the beam changes from
w ¼ �12 ðW ¼ �2:4mmÞ to w ¼ 4 ðW ¼ 0:79mmÞ, while the concentrated force qs covers from qs ¼ �6000
ðQs ¼ �0:44NÞ to qs ¼ 6000 ðQs ¼ 0:44NÞ. When the force increases to the negative z-direction (upward
against the gravity), the beam deflects showing the characteristics of a softening spring from w ¼ 0 to the
negative direction. As the deflection is close to w ¼ �2:46, the magnitude of the force qs saturates. In the
range of deflection from w ¼ �2:46 to �7:23, the restoring force shows a negative gradient. As the
deflection increases more than w ¼ �7:23, the restoring force turns to the type of a hardening spring.
In addition, without the concentrated force, the post-buckled beam has two stable equilibrium positions,
at w ¼ 0 and �8:2.

4.3. Test procedure of chaotic vibration

Applying the periodic excitation ps þ pd cos ot on the post-buckled beam, chaotic responses of the beam
are investigated. Under the non-dimensional static force ps ¼ 271, the peak amplitude of periodic excitation
pd ¼ 1174 ðad ¼ 40m=s2Þ is selected. To find frequency regions where chaotic responses are generated, the
nonlinear frequency response curves are inspected. The exciting frequency is changed slowly within the range
from o ¼ 10 ðf ¼ 40HzÞ to o ¼ 50 ðf ¼ 200HzÞ with the sweep rate of the frequency 0.1Hz/s. The instability
boundaries of the chaotic response are obtained by changing the amplitude of the periodic exciting force from
pd ¼ 500 ðad ¼ 17:0m=s2) to pd ¼ 1470 ðad ¼ 50:0m=s2) and by changing the exciting frequency. Time
responses of the chaotic vibrations are examined with the Fourier spectra, the Poincaré projections and the
maximum Lyapunov exponents. Bifurcation phenomena from the periodic response to the chaotic response
are inspected with the Poincaré projection for the response of deflection by the continuous change of the
exciting frequency. The maximum Lyapunov exponent lmax of the chaotic response is calculated with the
procedure by Wolf et al. [19] and Takens [20]. Increasing the embedding dimension e in the pseudo phase
space, if the maximum Lyapunov exponent lmax is saturated to a constant value, the maximum Lyapunov
exponent lmax and the embedding dimension e of the inspected response are determined. If the lmax takes a
-6000
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Fig. 4. Characteristics of the restoring force under concentrated load qs at x ¼ 0:5, measurement point is x ¼ 0:3, nx ¼ 40:9ð¼ 1:14ncrÞ.
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positive value, the response is confirmed as the chaos. Half of the embedding dimension corresponds to the
number of vibration modes which predominantly contribute to the chaotic response [6].

Finally, measuring simultaneous responses at multiple positions of the post-buckled beam, the principal
components are calculated by the Karhunen–Loève transformation [7,18,21]. The K–L transformation
enables one to estimate contribution ratio and related modal pattern in the chaotic response of the post-
buckled beam. Results of the principal component analysis cannot strictly predict the nonlinear modes of
vibration. However, the principal component analysis represents an optimal estimation of linear modes to the
nonlinear time responses.

5. Results and discussion

5.1. Frequency response curves of the post-buckled beam

Nonlinear response curves of the post-buckled beam are obtained under the static force and the periodic
exciting force ps þ pd cosot. The results are shown in Fig. 5 under the non-dimensional force amplitude of
excitation pd ¼ 1174. The ordinate wrms indicates the root mean square value of the dynamic response at the
position x ¼ 0:3 of the beam, while the abscissa o denotes the non-dimensional exciting frequency. The actual
exciting frequency f measured with Hz is also indicated on the abscissa. Notation ði : jÞ denotes the type of
resonance, in which index i is a generated mode of vibration, while index j denotes a type of resonance. For
example, j ¼ 1 indicates the principal resonance, while j ¼ 1

3
is the sub-harmonic resonance of 1

3
order. The

chaotic response is represented by the notation Cði : jÞ, in which indices i and j correspond to the dominant
mode of vibration and the type of resonance, respectively. Natural frequencies of the post-buckled beam are
also indicated by the solid circles on the abscissa.

In the figure, the nonlinear response curve corresponds to the characteristics of restoring force with the type
of a softening-and-hardening spring. Decreasing the exciting frequency o from upper region, first, the
principal resonance response (2:1) is generated with the second mode of vibration at the frequency o ¼ 44:0.
As the frequency is decreased, the sub-harmonic resonance response ð1 : 1=2Þ is bifurcated from the non-
resonant response at o ¼ 36:8. The amplitude increases as the exciting frequency decreases. The behavior of
the response corresponds to the characteristics of restoring force of a softening spring within the smaller
amplitude. The amplitude of the sub-harmonic resonance transits to the non-resonant response by a jump
phenomenon at o ¼ 28:3. Furthermore, decreasing the exciting frequency o, two types of chaotic responses
are observed clearly. The chaotic responses are generated first from the non-resonant response with the jump
phenomenon. As will be shown later in Figs. 13 and 14, the maximum Lyapunov exponents of these responses
have positive values, then the responses are confirmed as the chaos. Moreover, these chaotic responses are
significantly dominated by the sub-harmonic resonance response with the type of a softening-and-hardening
spring. In the higher frequency range from o ¼ 18:3 to 17.6, the chaotic response Cð1 : 1=3Þ is dominated
12

8

4

0

w
rm

s

5040302010 ω

2001601208040

f [Hz]

(1:1)

(1:1/2)

C(1:1/2)

C(1:1/3)

(2:1)ω 1
ω 2

(1:1)

Fig. 5. Frequency response curve, pd ¼ 1174, x ¼ 0:3, sweep rate ¼ 0:1½Hz/s�.



ARTICLE IN PRESS
K. Nagai et al. / Journal of Sound and Vibration 304 (2007) 541–555548
predominantly by the sub-harmonic resonance response of 1
3
order accompanied with the lowest mode of

vibration. In the lower range from o ¼ 17:3 to 16.1, the chaotic response Cð1 : 1=2Þ appears corresponding to
the sub-harmonic resonance response of 1

2
order. These chaotic responses are generated with larger amplitude

in the lower frequency regions than the higher frequency regions where the corresponding sub-harmonic
resonance in smaller amplitude is generated. However, the maximum amplitudes in these chaotic responses are
less than the large amplitude of the principal resonance with the lowest vibration mode. When the exciting
frequency decreases to o ¼ 16:1, the chaotic response Cð1 : 1=2Þ transits to the response of the principal
resonance. The principal resonance shows the response corresponding to a hardening spring.

5.2. Instability boundaries of the chaotic vibration

Changing the amplitude of periodic force pd and the exciting frequency o, instability boundaries are
obtained where the chaotic responses are generated. Under different magnitudes of the amplitude pd , the
frequency response curves of the chaotic responses are shown in Fig. 6. When the excitation amplitude
increases as (a) pd ¼ 625, (b) pd ¼ 898, (c) pd ¼ 1174 and (d) pd ¼ 1460, the instability region of the chaos
separates into two groups. The instability regions are shown in Fig. 7. When the amplitude pd is small, chaotic
response is not generated. As the amplitude pd increases to the magnitude of pd ¼ 630, the chaotic response
Cð1 : 1=2Þ due to the sub-harmonic resonance of 1

2
order appears first. More than large amplitude pd ¼ 1077,

the chaotic response Cð1 : 1=3Þ is also generated. These chaotic regions are shifted proportionally to the higher
frequency range as the exciting amplitude pd increases.

5.3. Time progresses, Fourier spectra and Poincaré projections of the chaotic responses

The nonlinear time progresses approaching the chaotic responses Cð1 : 1=3Þ and Cð1 : 1=2Þ are examined by
the Fourier spectra and the Poincaré projections. The nonlinear progresses are measured at the point x ¼ 0:3
of the beam under the amplitude of periodic force pd ¼ 1174. In the frequency range including the chaotic
response Cð1 : 1=3Þ, the results at the exciting frequencies o ¼ 18:28; 18:08 and 17.98 are shown in
Fig. 8(a)–(c), respectively. In the left-side figures, the time progresses of the non-dimensional deflection w are
shown by the time scale of excitation period te. The Fourier spectra of these responses are presented in the
middle figures. In the figure, the ordinate stands for the Fourier amplitude A of which level is scaled with
decibel, while the abscissa indicates the non-dimensional frequency of spectrum osp with logarithmic scale.
The right-hand-side figures are the Poincaré projections. The deflection w and the velocity w;ot at the position
x ¼ 0:3 of the beam are recorded in every period of the excitation. In the projections, 6000 points are plotted
on the phase plane with the delay of phase y ¼ �2p=3 from the maximum amplitude of the exciting force. In
Fig. 8(a), the time progress at the frequency o ¼ 18:28 shows an almost periodic response. The small
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Fig. 6. Frequency response of chaotic responses, (a) pd ¼ 625; (b) pd ¼ 898; (c) pd ¼ 1174; (d) pd ¼ 1460.
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amplitude response corresponds to the non-resonant vibration around the position w ¼ 0, i.e., the one of the
static equilibrium points. The dominant spike of the Fourier spectrum indicates the fundamental harmonics of
the excitation. Other spikes appear at the frequency related to the sub-harmonic component of 1

3
order and the

higher harmonic components of the exciting frequency. The Poincaré projection of the almost periodic
response shows the concentrated figure of attractor. As the frequency is decreased to o ¼ 18:08, the time
progress in Fig. 8(b) indicates irregular amplitude modulation. The time progress involves the response of the
sub-harmonic component of 1

3 order among the periodic response of the excitation. The Fourier spectrum has
the distinct sub-harmonic components of orders i=3 ði ¼ 1; 2; 3; 4; 5; . . .Þ. The related Poincaré projection
shows the condensed closed loop with three sharp bends in the phase plane. The figure of the attractor
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represents the response of the sub-harmonic resonance of 1
3
order with the amplitude modulation. When the

frequency is changed to o ¼ 17:98, the chaotic response of the type Cð1 : 1=3Þ appears drastically. In the large
amplitude chaotic response the beam transits irregularly between the two stable equilibrium points, w ¼ 0 and
�8:2, involving dynamic snap-through. However, the time response around w ¼ �8:2 does not appear
compared with the time response around w ¼ 0. The Fourier spectrum of the chaotic response has lump
spectrum around one-third of the exciting frequency o. Therefore, the chaotic response Cð1 : 1=3Þ is generated
from the predominant response of the sub-harmonic resonance of 1

3
order. The Poincaré projection of the

chaotic response of the type Cð1 : 1=3Þ spreads out to a scattered figure, involving the figure of three sharp
bends. A fractal pattern is clearly constructed in this Poincaré projection. Fig. 9 shows the variation of the
Poincaré projections for the chaotic response Cð1 : 1=3Þ at the exciting frequency o ¼ 17:8, changing the phase
delay y with the increment of p=3 rad. As the phase angle is shifted, the projection rotates clockwise
accompanied by folding-and-stretching in the fractal figure.

Fig. 10 shows the time progress, the corresponding Fourier spectra and the Poincaré projections of the
responses including the chaotic response Cð1 : 1=2Þ in the frequency region from o ¼ 17:48 to 16.63. When the
exciting frequency decreases from o ¼ 17:48 to 16.78, the periodic time response around w ¼ 0 increases
towards the other static equilibrium point w ¼ �8:2. Furthermore, the sub-harmonic components of 1

2
order in

the periodic response are generated. The corresponding figure of the Poincaré projection is enlarged. In the
chaotic response at o ¼ 16:63, the time progress involves both irregular responses of small amplitude and of
large amplitude. The large amplitude response transits between two equilibrium points with same order
of occurrence. The corresponding Fourier spectrum shows the broad-band distribution in the frequency of
spectrum. The lumped spectrum of the chaotic response is distributed close to the frequency of the sub-
harmonic component of 1

2
order. The figure of the Poincaré projection is similar to the result of the chaos

Cð1 : 1=3Þ in Fig. 8(c). However, the projections are more condensed around the two static equilibrium points
w ¼ �8:2 and 0 than the projections of Cð1 : 1=3Þ. Furthermore, the figure has a different fractal pattern
around the points of w ¼ 2 and w;ot ¼ 0.

5.4. Bifurcation behavior to the chaotic responses

To confirm the bifurcation behavior from the sub-harmonic responses of 1
3
order and of 1

2
order to the

chaotic responses, the Poincaré projections of the deflections are recorded by decreasing the exciting frequency
gradually under the amplitude of periodic force pd ¼ 1174. The Poincaré projection of the chaos Cð1 : 1=3Þ
from the exciting frequency o ¼ 18:38 to 17.75 is shown in Fig. 11. In Fig. 11(a), first, the Poincaré projection
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Fig. 10. Time progresses, Fourier spectra and Poincaré projections of the responses of the beam Cð1 : 1=2Þ, (a) o ¼ 17:48; (b) o ¼ 16:78;
(c) o ¼ 16:63.

4

3

2

1

0

w

304030002960

(b)

-8

-4

0

4

w

6000400020000

τ/τe τ/τe

Enlarged
 in Fig (b)

(a)

Fig. 11. Transition to the chaotic response Cð1 : 1=3Þ from o ¼ 18:38 to o ¼ 17:75.
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shows the steady-state periodic response of non-resonance, within the restricted amplitude. Then, the
projection suddenly spreads to large amplitude and the response transits to the chaotic vibration. The
projection during the transition to the chaos is enlarged in Fig. 11(b). In the figure, it is clearly observed that
the points of projection construct three layers along the time sequence. Then the chaotic response is bifurcated
from the sub-harmonic periodic response of 1

3
order.

Fig. 12 is the time variation of the Poincaré projection in the transition to the chaos Cð1 : 1=2Þ. The exciting
frequency is decreased from o ¼ 17:08 to 16.50. In Fig. 12(a), the almost steady-state periodic response of the
sub-harmonic resonance of 1

2
order suddenly transits to the chaotic response. As can be seen from the enlarged

Poincaré projection in Fig. 12(b), two dotted layers of the projection is also observed clearly. This implies that
the chaos is bifurcated from the sub-harmonic periodic response of 1

2 order. Consequently, the bifurcation
behavior from the sub-harmonic responses of 1

3
order and of 1

2
order to the chaos is confirmed by the precise

measurement in the experiment.
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5.5. Maximum Lyapunov exponents of the chaotic responses

Based on the time progresses of the chaotic responses, the maximum Lyapunov exponents are calculated by
the Wolf’s method. Fig. 13(a) shows the maximum Lyapunov exponents lmax related to the embedding
dimension e of the chaotic response Cð1 : 1=3Þ at the exciting frequency o ¼ 17:9 under the periodic force
pd ¼ 1174. As the embedding dimension e increases to e ¼ 7 or 8, the maximum Lyapunov exponent lmax

converges to lmax ¼ 1:6. Furthermore, the result of the chaotic response Cð1 : 1=2Þ at the frequency o ¼ 16:5
is also shown in Fig. 13(b). The maximum Lyapunov exponent lmax converges to lmax ¼ 1:9. As the maximum
Lyapunov exponents converge to the positive constant values, these responses are confirmed as the chaos.

Fig. 14 shows the maximum Lyapunov exponent lmax in each exciting frequency o. The maximum
Lyapunov exponents of the chaos Cð1 : 1=3Þ, in the frequency region from o ¼ 18:0 to 17.5, take values from
lmax ¼ 1:1 to lmax ¼ 1:7, and averaged value is calculated as lmax ¼ 1:5. In the region of the chaos Cð1 : 1=2Þ
from o ¼ 16:7 to 16.4, the maximum Lyapunov exponent ranges from lmax ¼ 1:3 to 1.9, and averaged
exponent takes lmax ¼ 1:7. Consequently the maximum Lyapunov exponent of the chaos Cð1 : 1=2Þ in the
lower frequency region takes larger value than that of the chaos Cð1 : 1=3Þ.

5.6. Contributions of vibration modes to the chaotic responses

The chaotic responses of Cð1 : 1=3Þ and Cð1 : 1=2Þ are confirmed as the chaos by the positive maximum
Lyapunov exponents in Fig. 13. Furthermore, the positive maximum Lyapunov exponents converge at the
embedding dimension from e ¼ 7 to 8, then the number of the predominant modes of vibration which
contribute to the chaos is counted as three or four.

By using the principal component analysis to the chaotic time responses at multiple positions of the post-
buckled beam, contributions of vibration modes to the chaotic response are determined. The chaotic time
progresses of deflection are detected simultaneously at five positions along the beam. The positions are
selected as x ¼ 0:09; 0:36; 0:5; 0:64 and 0:91. Applying the principal component analysis, contribution ratio and
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related modal pattern are calculated. Fig. 15 shows the contribution ratio for the chaotic response Cð1 : 1=3Þ
at the frequency o ¼ 17:8 under the periodic force pd ¼ 1174. The ordinate denotes the contribution
ratio mi of each principal component, while the abscissa is the order of eigenvalue i. Modal patterns are
also illustrated in the figure. The largest principal component, which corresponds to the lowest vibration
mode, prevails the contribution ratio of 99.1%. The contribution ratios of the second and third modes
are 0.87% and 0.023%, respectively. Furthermore, the contribution ratio for the chaotic response Cð1 : 1=2Þ
at the frequency o ¼ 16:6 is shown in Fig. 16. The largest principal component related to the lowest mode
of vibration takes 98.9%. The second and the third modes have 1.1% and 0.031% of the contribution ratios,
respectively.



ARTICLE IN PRESS

4

6
8

0.1

2

4

6
8

1

C
on

tr
ib

ut
io

n 
ra

tio
 [

%
]

18.518.017.517.016.516.0
ω

C(1:1/2)

C(1:1/3)

Fig. 17. Contribution ratio of higher modes of vibration to the chaos in each exciting frequency.

K. Nagai et al. / Journal of Sound and Vibration 304 (2007) 541–555554
Changing the exciting frequency, contributions of the higher modes to the chaotic vibration are examined.
Fig. 17 shows the sum of contribution ratios of the higher modes in each exciting frequency o. In the
frequency range where the chaotic responses are generated, contribution ratio of the lowest mode of
vibration is more than 98%. The higher modes of vibration also contribute from 1% to 2%. Therefore,
the lowest mode of vibration contributes predominantly to the chaotic response. The contribution
of the higher modes of vibration to the chaotic response Cð1 : 1=2Þ is slightly larger than that to the chaos
Cð1 : 1=3Þ.

6. Conclusions

Precise experiments have been carried out on the chaotic vibrations of a post-buckled beam both ends
clamped with an axial elastic constraint at one end. Chaotic responses of the post-buckled beam are inspected
in detail. The main results are summarized as follows:
(1)
 Dominant chaotic responses of the post-buckled beam correspond to the sub-harmonic resonances of 1
2

order and of 1
3
order. The chaotic responses are bifurcated owing to the characteristics of restoring force

with the type of a softening-and-hardening spring.

(2)
 The time progress and the Poincaré projections of chaotic response with the sub-harmonic reso-

nance of 1
2
order show a qualitative difference from the chaotic response with the sub-harmonic reso-

nance of 1
3

order, although these chaotic responses are generated in the neighboring frequency
region. Bifurcation processes from the periodic sub-harmonic resonance responses to the chaotic
responses are definitely clarified with the Poincaré projection by decreasing the exciting frequency very
slowly.
(3)
 Under smaller amplitude of excitation, chaotic response of the sub-harmonic resonance of 1
2
order is easily

generated than the chaos of the sub-harmonic resonance of 1
3
order. Instability boundaries of the chaotic

responses are shifted to higher frequency range as the excitation amplitude increases.

(4)
 The maximum Lyapunov exponent of the chaos with the sub-harmonic response of 1

2
order takes larger

averaged value of 1.7 than the exponent 1.5 of the chaos with the sub-harmonic response of 1
3
order. By the

saturated maximum Lyapunov exponent to the embedding dimension, the number of the vibration modes
contributed to the chaos is counted as three or four.
(5)
 The principal component analysis is carried out over the frequency regions of the two chaotic responses
dominated by the sub-harmonic resonances of 1

2
order and 1

3
order. The lowest mode of vibration

contributes more than 98% to the chaotic responses among other contributions of multiple vibration
modes.
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